Macrophage migration inhibitory factor (MIF) promotes cell survival and proliferation of neural stem/progenitor cells.

نویسندگان

  • Shigeki Ohta
  • Aya Misawa
  • Raita Fukaya
  • Satoshi Inoue
  • Yonehiro Kanemura
  • Hideyuki Okano
  • Yutaka Kawakami
  • Masahiro Toda
چکیده

In a previous study, we showed that murine dendritic cells (DCs) can increase the number of neural stem/progenitor cells (NSPCs) in vitro and in vivo. In the present study, we identified macrophage migration inhibitory factor (MIF) as a novel factor that can support the proliferation and/or survival of NSPCs in vitro. MIF is secreted by DCs and NSPCs, and its function in the normal brain remains largely unknown. It was previously shown that in macrophages, MIF binds to a CD74-CD44 complex. In the present study, we observed the expression of MIF receptors in mouse ganglionic-eminence-derived neurospheres using flow cytometry in vitro. We also found CD74 expression in the ganglionic eminence of E14 mouse brains, suggesting that MIF plays a physiological role in vivo. MIF increased the number of primary and secondary neurospheres. By contrast, retrovirally expressed MIF shRNA and MIF inhibitor (ISO-1) suppressed primary and secondary neurosphere formation, as well as cell proliferation. In the neurospheres, MIF knockdown by shRNA increased caspase 3/7 activity, and MIF increased the phosphorylation of Akt, Erk, AMPK and Stat3 (Ser727), as well as expression of Hes3 and Egfr, the products of which are known to support cell survival, proliferation and/or maintenance of NSPCs. MIF also acted as a chemoattractant for NSPCs. These results show that MIF can induce NSPC proliferation and maintenance by multiple signaling pathways acting synergistically, and it may be a potential therapeutic factor, capable of activating NSPC, for the treatment of degenerative brain disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sox6 Up-Regulation by Macrophage Migration Inhibitory Factor Promotes Survival and Maintenance of Mouse Neural Stem/Progenitor Cells

Macrophage migration inhibitory factor (MIF) has important roles in supporting the proliferation and/or survival of murine neural stem/progenitor cells (NSPCs), but downstream effectors remain unknown. We show here that MIF robustly increases the expression of Sox6 in NSPCs in vitro. During neural development, Sox6 is expressed in the ventricular zone of the ganglionic eminence (GE) of mouse br...

متن کامل

Macrophage migration inhibitory factor inhibits BMP-4 induced apoptosis

Non-canonical bone morphogenic protein (BMP) pathway signaling plays a critical role during embryonic neurogenesis, inducing apoptosis and eliminating an excess of neural progenitor cells, in preparation for the population of the neural stem cell niches. Our previous work discovered that non-canonical BMP signaling also induced the expression of the antiapoptotic cytokine macrophage migration i...

متن کامل

O-28: Endometriosis Is Influenced by The Promoter Haplotype-Based Expression of Macrophage Migration Inhibitory Factor (MIF)

Background: Macrophage migration inhibitory factor (MIF) is a key pro-inflammatory cytokine that is secreted by accumulated active macrophages in ectopic tissue of endometriosis. MIF is involved in pathophysiological events of endometriosis, such as angiogenesis and cell proliferation. MIF that stimulates the synthesis of PGE2, leads to over-expression of local estradiol synthesis in endometrio...

متن کامل

Macrophage Migration Inhibitory Factor Promotes Proliferation and Neuronal Differentiation of Neural Stem/Precursor Cells through Wnt/β-Catenin Signal Pathway

Macrophage migration inhibitory factor (MIF) is a highly conserved and evolutionarily ancient mediator with pleiotropic effects. Recent studies demonstrated that the receptors of MIF, including CD44, CXCR2, CXCR4 and CD74, are expressed in the neural stem/progenitor cells (NSPCs). The potential regulatory effect of MIF on NSPCs proliferation and neuronal differentiation, however, is largely unk...

متن کامل

I-43: Expression Profile of Macrophage Migration Inhibitory Factor (MIF) Signaling Pathway as A Potentional Biomarker in Pathophysiology of Endometriosis

Background MIF via its receptor, CD74, initiates a signaling cascade that leads to proliferation and survival of cells. Also, MIF binding to CD74 activates p38 signaling pathways that lead to positive effect on the expression of COX-2. The aim of this study was to evaluate the gene expression profile of MIF, CD74 and COX-2 in normal, ectopic and eutopic endometrium during menstrual cycle. The e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 125 Pt 13  شماره 

صفحات  -

تاریخ انتشار 2012